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1 INTRODUCTION 
 
This project’s goal is to formally verify safety regions for a car avoiding a collision with an 
obstacle by both braking and swerving. The system is represented in two separate models, the 
Unicycle Model and the Bicycle Model. The Unicycle Model features a single point located at 
the center of the rear axle of the car. The car’s physical dimensions, length and width, are still 
accounted for in the safety regions however the motion is modeled with the rear axle point.  
The Bicycle Model builds upon the Unicycle Model by changing the rear axle point to a fixed 
wheel and adding a second, rotating wheel to the center of the front axle. The motion of the 
car is modeled in accordance to both these wheels. The significance of the Bicycle Model is that 
it changes the input controls to more realistic parameters. Instead of using turn radius and 
heading angle which is not feasibly directly regulated by a driver/controller, it uses turning 
angle (steering wheel) and velocity (pedals). The trajectories and safety regions for both models 
have been derived by hand and simulated in MATLAB. Using differential dynamic logic d𝓛, the 
Unicycle Model was verified with the KeYmaera X tactical theorem prover for both swerving-
only and braking-while-swerving. The verification for the Bicycle Model, both rear-wheel-drive 
and front-wheel-drive, is still underway using the similar methods to the Unicycle Model. 
 
This paper is heavily based on the work reported in [1] and [2], listed in the references and 
repeated below. While this paper focuses primarily on the kinematics of the Unicycle and 
Bicycle Model, [1] and [2] are more involved in the formal proofs for the Unicycle Model. 
 
[1] Aakash Abhishek, Harry Sood, and Jean-Baptiste Jeannin. 2020, to appear. Formal 

verification of swerving maneuvers for car collision avoidance. In 2020 American Control 
Conference (ACC). IEEE. 

 
[2] Aakash Abhishek, Harry Sood, and Jean-Baptiste Jeannin. 2020, to appear. Formal 

verification of braking while swerving in automobiles. In 2020 International Conference 
on Hybrid Systems: Computation and Control (HSCC). ACM. 

 

2 KINEMATIC UNICYCLE MODEL 
 
2.1 Equations of Motion 
In the frame of the Unicycle Model, the vehicle is assumed to be a rectangular object with its 
center of mass (COM) located at the center of the vehicle’s rear axle for simplicity. The vehicle’s 
motion is based on Ackermann’s Steering Geometry (ASG). The COM is chosen to be at the 
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center of the vehicle’s rear axle due to its relationship with ASG, allowing the velocity vector 𝒗 
to be aligned with the vehicle’s physical heading. 
 
These assumptions form a simple kinematic model (Figure 1) with the following key variables: 

• 𝑥 and 𝑦 represent the location of COM in a Cartesian frame. 

• 𝑣 represents the speed of COM. 

• 𝑅 represents the radius of turn of COM while the vehicle is swerving. 

• 𝜃 represents the vehicle’s heading while the vehicle is swerving. 
 

 
Figure 1: Kinematic Model 

 
To account for the changing velocity incurred by braking-while-swerving, the Circle of Forces 
(Figure 2) is used to avoid skidding [3]. The available traction force 𝐹𝜇  is given by the circle’s 

radius and is derived from the contact between the car’s tires and the driving surface. The 
amount of force allocated to turning 𝐹𝑇 and braking 𝐹𝐵 depends on the turning angle 𝜙. For 

instance, when 𝜙 = 0 the vehicle is only braking and when 𝜙 = 
𝜋

2
 the vehicle is only swerving. 

 

 
Figure 2: Circle of Forces 
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𝐹𝑇 = 𝜇𝑚𝑔 sin(𝜙) 
𝐹𝐵 =  𝜇𝑚𝑔 cos(𝜙) 

𝐹𝜇 =  𝜇𝑚𝑔 = √𝐹𝐵
2 + 𝐹𝑇

2 

 
The equations of motion (1) – (5) are given below. The following constants have been used in 
the equations: 

• 𝑔 represents the magnitude of the acceleration due to gravity. 

• 𝜇 represents the coefficient of friction between the tires and driving surface. 

• 𝜇0 represents the coefficient of static friction, where 𝜇 ≤ 𝜇0. 

• 𝑅𝑚𝑖𝑛 represents the vehicle’s geometric minimum turning radius. 
 

𝑥̇ = 𝑣(𝑡) sin(𝜃(𝑡)) 1 

 
𝑦̇ = 𝑣(𝑡) cos(𝜃(𝑡)) 2 

 
𝑣̇ = −𝜇𝑔 cos(𝜙) 3 

 

𝑅(𝑡) =

{
 
 

 
 𝑣(𝑡)2

𝜇𝑔 sin(𝜙)
, if R𝑚𝑖𝑛 ≤

𝑣(𝑡)2

𝜇𝑔 sin(𝜙)
 and 𝜇 ≤ 𝜇0

𝑅𝑚𝑖𝑛, if R𝑚𝑖𝑛 >
𝑣(𝑡)2

𝜇𝑔 sin(𝜙)

4 

 

𝜃̇(𝑡) =  
𝑣(𝑡)

𝑅(𝑡)
=

{
 
 

 
 𝜇𝑔 sin(𝜃)

𝑣(𝑡)
, if R𝑚𝑖𝑛 ≤

𝑣(𝑡)2

𝜇𝑔 sin(𝜙)
 and 𝜇 ≤ 𝜇0

𝑣(𝑡)

𝑅𝑚𝑖𝑛
, if R𝑚𝑖𝑛 >

𝑣(𝑡)2

𝜇𝑔 sin(𝜙)

5 

 
2.2 Assumptions 
 
The following assumptions have been made for the Unicycle Model, in order to simplify the 
system (Figure 3): 

• The vehicle is approximated as a rectangle with dimensions of length 𝐿 and width 𝑊. 

• 𝐿 is split into two segments, the distance from the rear axle to the front of the vehicle 𝑙𝐹 
and the distance from the rear axle to the rear of the vehicle 𝑙𝑅. 

• COM is located at the center of the vehicle’s rear axle. 

• Any skidding between the tires and the driving surface has been ignored. 
 
Due to the usage of ASG, a portion of the vehicle protrudes out of the trajectory at the 
beginning of the turn. Figure 4 shows the start of a right turn in which the point NH moves to 
the left. This region is referred to as a “notch” and the greatest distance of protrusion is 
referred to as the notch deviance 𝑑𝑒𝑣𝑁𝐻, given by (6). In numerical simulations, using typical 
dimensions of a sedan, 𝑑𝑒𝑣𝑁𝐻 is only a few centimeters. Since the sedan’s dimensions are in 
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terms of meters, the notch can be reasonably ignored. In other words, the assumption is that 
assuming that the car does not have a rear segment, and 𝑙𝑅 = 0 and 𝐿 = 𝑙𝐹. This is also 
repeated in Figure 4, where the dotted line of the notch is barely separate to the solid line of 
the actual trajectory. 
 

 
Figure 3: Assumptions 

 
 

𝑑𝑒𝑣𝑁𝐻 = √𝑙𝑅
2 + (𝑅 +

𝑊

2
)
2

− 𝑅 −
𝑊

2
6 

 
 

 
Figure 4: Notch 
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3 THE SWERVING-ONLY AND BRAKING-WHILE-SWERVING UNICYCLE MODEL 
 
NOTE: While proofs for both the swerving-only and braking-while-swerving unicycle model have 
been completed in KeYmaera X, they will not be included in this report due to length and 
complexity. 
 
3.1 Swerving-Only Unicycle Model 
 
The collision avoidance system used in swerving-only is modeled as a discrete controller. This 
controller uses the vehicle’s steering capabilities as an input in order to swerve into a circular 
trajectory followed by a straight segment upon passing the obstacle. The suggested trajectory is 
seen in Figure 5. The system is based on two advisory parameters, 𝑅 and 𝜃𝑚𝑎𝑥, to give the 
advisory in the form (𝑅, 𝜃𝑚𝑎𝑥).  𝑅 represents the advised turning radius and 𝜃𝑚𝑎𝑥  represents 
the advised angle of turn. Throughout the turn, the radius must comply with the constraints 

𝑅 ≥ 𝑅𝑚𝑖𝑛 and
𝑣0
2

𝑅
≤ 𝜇0𝑔 as posed in (4). 

 

 
Figure 5: Collision Avoidance System 

 
Since there is no braking for the swerving-only maneuver, it can be discerned that all force is 

applied towards turning. Thus, 𝜙 =
𝜋

2
. From this and the equations of motion (1) – (5), the 

solutions (7) – (8) can be found. 
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𝑡 ≤
𝑅𝜃𝑚𝑎𝑥
𝑣0

∶  

{
 
 

 
 𝑥(𝑡) =  −R cos(𝜃(𝑡))

𝑦(𝑡) = R sin(𝜃(𝑡))

𝜃(𝑡) =
𝑣0𝑡

𝑅

7 

 

𝑡 >
𝑅𝜃𝑚𝑎𝑥
𝑣0

∶  {

𝑥(𝑡) =  −R cos(𝜃𝑚𝑎𝑥) + 𝑣0𝑡 sin(𝜃𝑚𝑎𝑥)

𝑦(𝑡) = R sin(𝜃𝑚𝑎𝑥) + 𝑣0𝑡 cos(𝜃𝑚𝑎𝑥)

𝜃(𝑡) = 𝜃𝑚𝑎𝑥

8 

 
3.2 Swerving-While-Braking Unicycle Model 

 
The braking-while-swerving maneuver uses the equations of motion (1) – (5) with the condition 

that 𝜙 can be varied anywhere between 0 and 
𝜋

2
. This is because different values of 𝜙 result in 

different combinations of braking and turning (mostly braking for 𝜙 <
𝜋

4
 and mostly turning for 

𝜙 >
𝜋

4
).  

 
Once the maneuver is initiated, 𝜙 can no longer be changed in this system, unless the 
maneuver is recalculated from the current point. This is for simplicity since it limits the system 
to constant braking and turning after initiation.  
 
Allowing 𝜙 to be varied gives the following solutions (9) – (12) to the differential equations of 
motion (1) – (5). 
 

𝑐1 = 𝜇𝑔 cos(𝜙) 
 
𝑐2 = 𝜇𝑔 sin(𝜙) 

 
𝑣(𝑡) = 𝑣0 − 𝑐1𝑡 9 

 

𝜃(𝑡) =  
𝑐2
𝑐1
ln (

𝑣0
𝑣0 − 𝑐1𝑡

) 10 

 

𝑥(𝑡) =  −{
(𝑣0 − 𝑐1𝑡)

2 (2𝑐1 sin (
𝑐2(ln(𝑣0) − ln(𝑣0 − 𝑐1𝑡))

𝑐1
))

𝑐2
2 + 4𝑐1

2 

+
(𝑣0 − 𝑐1𝑡)

2 (𝑐2 cos (
𝑐2(ln(𝑣0) − ln(𝑣0 − 𝑐1𝑡))

𝑐1
))

𝑐2
2 + 4𝑐1

2 
} +

𝑣0
2𝑐2

𝑐2
2 + 4𝑐1

2 11
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𝑦(𝑡) =  −{
(𝑣0 − 𝑐1𝑡)

2 (2𝑐1 cos (
𝑐2(ln(𝑣0) − ln(𝑣0 − 𝑐1𝑡))

𝑐1
))

𝑐2
2 + 4𝑐1

2 

−
(𝑣0 − 𝑐1𝑡)

2 (𝑐2 sin (
𝑐2(ln(𝑣0) − ln(𝑣0 − 𝑐1𝑡))

𝑐1
))

𝑐2
2 + 4𝑐1

2 
} +

2𝑣0
2𝑐1

𝑐2
2 + 4𝑐1

2 12

 

 
Furthermore, substituting in (7) – (8) into (9) – (10) gives the following: 
 

𝑥(𝑡) =  −(
𝑣2(2𝑐1 sin(𝜃) + 𝑐2 cos(𝜃))

𝑐2
2 + 4𝑐1

2 ) +
𝑣0
2𝑐2

𝑐2
2 + 4𝑐1

2 

 

𝑦(𝑡) =  − (
𝑣2(2𝑐1 cos(𝜃) − 𝑐2 sin(𝜃))

𝑐2
2 + 4𝑐1

2 ) +
2𝑣0

2𝑐1

𝑐2
2 + 4𝑐1

2 

 
Numerical simulation of the above equations in MATLAB provides the car’s trajectory 
throughout the braking-while-swerving maneuver which results in a logarithmic spiral. As 
shown in Figure 6, the dashed trajectory is circular and represents swerve-only while the solid 
trajectory is the logarithmic spiral represents braking-while-swerving. For Figure 6: 

• ‘x’ is the instantaneous center of turn for different points during the maneuver. 

• ‘O’ is the initial center of turn. 

• (𝑥0, 𝑦0) is the initial location of the car. 

• 𝐹 is the final location of the car, or when the car comes to a stop. 
 

 
Figure 6: Swerve-Only vs Braking-while-Swerving 
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Figure 7: Spiral Trajectory with Parameters 

 
Knowing that the car’s trajectory follows a spiral, it is necessary to derive an equation in the 
form of a general logarithmic spiral in order to define it in terms of 𝑟 and 𝜃. The process is 
shown below and many key variables are depicted on Figure 7. 
 
Below are solutions for the location of COM with respect to the final point 𝐹. 𝐹, as seen in 
Figure 6, is the point where the car stops. They are denoted 𝑥𝐹 and 𝑦𝐹. 
 

𝑥𝐹(𝑡) =  
−𝑣2(2𝑐1 sin(𝜃) + 𝑐2 cos(𝜃)

𝑐2
2 + 4𝑐1

2 13 

 

𝑦𝐹(𝑡) =  
−𝑣2(2𝑐1 cos(𝜃) − 𝑐2 sin(𝜃)

𝑐2
2 + 4𝑐1

2 14 

 
Manipulating (11) – (12), the following equation can be derived. 
 

𝑥𝐹(𝑡)
2 + 𝑦𝐹(𝑡)

2 = 
𝑣(𝑡)4

𝑐2
2 + 4𝑐1

2 =
𝑣0
4𝑒

−(
4𝑐1
𝑐2
)𝜃(𝑡)

𝑐2
2 + 4𝑐1

2 15 

 
Since the equation for the logarithmic spiral is in the polar coordinate system, (13) – (14) must 
be converted.  
 

𝑥𝐹(𝑡) = 𝑟(𝑡)cos (𝜓(𝑡)) 
 

𝑦𝐹(𝑡) = 𝑟(𝑡)sin (𝜓(𝑡)) 
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Additionally, an equation for 𝑟(𝑡) can be found using (15). Following which, equations for  𝜓(𝑡) 
can be determined. 
 

𝑟(𝑡) =  √𝑥𝐹(𝑡)2 + 𝑦𝐹(𝑡)2 =
𝑣0
2𝑒

−(
2𝑐1
𝑐2
)𝜃(𝑡)

√𝑐2
2 + 4𝑐1

2
16 

  

cos(𝜓(𝑡)) =  −
2𝑐1 sin(𝜃(𝑡)) + 𝑐2 cos(𝜃(𝑡))

√𝑐2
2 + 4𝑐1

2
17 

 

sin(𝜓(𝑡)) =  −
2𝑐1 cos(𝜃(𝑡)) − 𝑐2 sin(𝜃(𝑡))

√𝑐2
2 + 4𝑐1

2
18 

 
Due to the fact that the equation is still needed in terms of 𝑟 and 𝜃, (17) – (18) can be used, 
along with a new parameter 𝛼, to relate 𝜃(𝑡) to 𝜓(𝑡). 
 

cos(𝛼) =
𝑐2

√𝑐2
2 + 4𝑐1

2
 

 

sin(𝛼) =
2𝑐1

√𝑐2
2 + 4𝑐1

2
 

 

cos(𝜓(𝑡)) =  −cos (𝛼 − 𝜃(𝑡)) 

 

sin(𝜓(𝑡)) =  −sin (𝛼 − 𝜃(𝑡)) 

 
𝜃(𝑡) = 𝜋 + 𝛼 − 𝜓(𝑡) 

 
Now that 𝜃(𝑡) is in terms of 𝜓(𝑡), (16) can be manipulated to be in the form of a logarithmic 
spiral (19). This allows the polar axis to be rotated to be (𝑟(𝑡), 𝜃(𝑡)) and allows safe regions to 
be defined outside the spiral region (Figure 8).  
 

General Logarithic Spiral: r = k1𝑒
𝑘2𝜃  

 

𝑟(𝑡) =  
𝑣0
2

√𝑐2
2 + 4𝑐1

2
𝑒
−(
2𝑐1
𝑐2
)𝜃(𝑡)

19 
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Figure 8: Spiral Trajectory with Adjusted Axis and Safe Regions 

 

4 THE BICYCLE MODEL 
 
4.1 Braking-While-Swerving Bicycle Model 
The Bicycle Model is similar to the Unicycle Model and uses many of the same assumptions. The 
main difference between the two, is that the Unicycle Model follows a single point located at 
the center of the rear axle while the Bicycle Model follows two wheels, one at the center of the 
front axle and one at the center of the rear axle (Figure 9). 
 

 
Figure 9: Spiral Trajectory with Adjusted Axis and Safe Regions 
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The purpose of employing the Bicycle Model is to provide more realistic advisory parameters to 
the controller. For instance, in the Unicycle Model the advisory is (𝑅, 𝜃𝑚𝑎𝑥). Both 𝑅, the turning 
radius, and 𝜃𝑚𝑎𝑥, the angle of turn, are not parameters that can be directly controlled by a 
controller on board the vehicle. The main control capabilities on the vehicle are the steering 
wheel (by extension, the steering angle of the wheels), and the pedals (acceleration and by 
extension the velocity). The Bicycle Model uses these more realistic parameters, the steering 
angle and the velocity, for its advisory since they can be directly influenced by the controller. 
 

 
Figure 10: Bicycle Model 

 
A stipulation of using a two-wheel system is that both rear-wheel-drive (RWD) and front-wheel-
drive (FWD) must be accounted for. For both RWD and FWD, parameters from the Unicycle 
Model apply (unless otherwise noted) and following parameters also apply (Figure 11): 

• 𝑙 represents the wheelbase of the vehicle. 

• 𝑑 represents the distance between the rear axle and the COM of the vehicle. 

• 𝛾 represents the steering angle of the vehicle. 

• 𝜔 represents the rate of change of 𝜃. 
 
Rear-Wheel-Drive: In the RWD system, the vehicle’s engine turns its rear wheels which are fixed 
in the orientation of the vehicle. This means that the vehicle’s velocity is aligned with the rear 
wheels and the vehicle itself. Figure 11 depicts the RWD system. 
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Figure 11: Rear-Wheel-Drive 

 
The equations of motion (20) – (23) apply to the RWD system when the COM is located at the 
center of the front axle (𝑑 = 0). 
 

𝑥𝑟̇ = 𝑣𝑟(𝑡) sin(𝜃(𝑡)) 20 

 

𝑦𝑟̇ = 𝑣𝑟(𝑡) cos(𝜃(𝑡)) 21 

 

𝜃̇ = 𝑣𝑟(𝑡) tan (
tan(𝛾)

𝑙
) 22 

 
𝑣𝑟̇ = 𝑎𝑟 23 

 
 
Front-Wheel-Drive: In the FWD system, the vehicle’s engine turns its front wheels which are 
free to rotate. This means that the vehicle’s velocity is aligned with the front wheels but not 
always the vehicle itself. Figure 12 depicts the FWD system. 
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Figure 12: Front-Wheel-Drive 

 
The equations of motion (24) – (27) apply to the FWD system when the COM is located at the 
center of the front axle (𝑑 = 𝑙). 
 

𝑥𝑓̇ = 𝑣𝑓(𝑡) sin(𝜃(𝑡) + 𝛾) 24 
 

𝑦𝑓̇ = 𝑣𝑓(𝑡) cos(𝜃(𝑡) + 𝛾) 25 
 

𝜃̇ = 𝑣𝑓(𝑡) (
sin(𝛾)

𝑙
) 26 

 
𝑣𝑓̇ = 𝑎𝑓 27 

 
When analyzing the trajectories of RWD and FWD, it was found that the vehicle remained on a 
circular path in both cases. The location of the vehicle is based on (20) – (21) and (24) – (25). In 
these equations, the velocity term outside the trigonometric does not affect the trajectory, only 
the speed the vehicle travels on the circle is affected. Of the terms inside the trigonometric 
functions, 𝜃(𝑡) changes linearly with time (as is required for a circle) and 𝛾 is constant. 
 
Due to the circular nature of the braking-while-swerving maneuver for this model, the 
swerving-only maneuver does not need to be analyzed. 
 
4.2 Proof Using Differential Dynamic Logic 
Differential dynamic logic d𝓛 is an extension upon first-order logic that can support discrete 
assignments, differential equations, and choice and control loops [4]. The proof for this model 
is based on the proof methodology from Jean-Baptiste Jeannin’s paper A Formally Verified 
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Hybrid System for Safe Advisories in the Next-Generation Airborne Collision Avoidance System 
[5]. For more information, consult [4] and [5].  
 
The proof for the Bicycle Model is still underway for both rear-wheel-drive and front-wheel-
drive using KeYmaera X. 
 

5 SUMMARY AND FUTURE WORK 
 
This paper outlines the Unicycle and Bicycle Model for a car collision avoidance system. The 
Unicycle Model includes both a swerving-only maneuver and a braking-while-swerving 
maneuver while the Bicycle Model includes a braking-while-swerving maneuver. Both 
maneuvers in the Unicycle Model has been formally verified while the proof for the Bicycle 
Model is still underway. 
 
Direct next steps to further this research is to complete the proof for the RWD and FWD in the 
Bicycle Model with the braking-while-swerving maneuver. More complicated future work 
includes introducing uncertainty to both the Unicycle Model and Bicycle Model. Additionally, 
the Bicycle Model could be sophisticated to include a varying radius to form a trajectory similar 
to the logarithmic spiral seen in the braking-while-swerving Unicycle Model. 
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