
Unsupervised Dictionary Learning for

Large-Scale Natural Image Classi�cation

Rui Zhang, Yang Yang

Advisor: Ph.D Kihyuk Sohn, Professor Honglak Lee

Department of CSE, University of Michigan

1 Introduction

Recent work in machine learning has been proven successful on object recognition task. For
instance, best digit-classi�cation accuracy on MNIST dataset rivals that of human-beings
(Cire³an et al., 2012); (Coates et al., 2011) has achieved state-of-art performance on both
CIFAR and NORB benchmarks; breakthrough on scalable visual recognition has been made
by (Krizhevsky et al., 2012) via e�cient implementation of deep convolutional networks.

However, there are still some limitations we can observe. Most progress was made with
human-labeled dataset. The size of training set and test set of MNIST is 60000 and 10000
respectively (LeCun et al., 1998). Moreover, convolutional network shows impressive perfor-
mance on large-scale task, but the supervise-styled training entails dealing with millions with
parameters and multi-layer deep architecture.

In this work, we are interested in classifying natural images with unsupervised learning al-
gorithms. We construct an e�cient yet simple feature learning system trained on millions of
images cropped from Youtube video. The system utilized clustering algorithms to train two
layers of dictionaries which are then used for feature mapping and classi�cation. Testing on
dataset derived from Labeled Face in the Wild, we can achieve best AUC of PR curve as much
as 95.79%.

2 Algorithm and Architecture

We make essential use of several dictionary learning and clustering algorithms in our system.
In section 2.1 to section 2.3, we introduce several building block algorithms, and �nally in
section 2.4, the whole training pipeline together with the classi�er is delineated.

2.1 Orthogonal Matching Pursuit

Given a set of basis functions and a data vector, Orthogonal Matching Pursuit (Pati et al.,
1993, Szlam et al, 2010) is a greedy coding algorithm to �nd coding representation of data.
During each iteration, OMP selects the most correlated basis function, which is a column of
dictionary matrix in our representation, according to the activation for the current residual.
The coding vector is then updated to re�ect the selected dictionary and its corresponding
activation. With �xed number of iteration k, OMP-k algorithm tries to minimize following
objective function:

1



f(z) =‖ Dz − x ‖2,

where D ∈ Rn×dis the dictionary, x ∈ Rnis data vector, and z ∈ Rdis coding subject to
‖ z ‖0≤ k.

Algorithm 1 Orthogonal Matching Pursuit-k

1: Input:Data vector of dimension n: x ∈ Rn, Dictionary matrix with d �lters:D ∈ Rn×d

2: Output: Coding of data: z ∈ Rd

3: Objective function: min
z
‖ Dz − x ‖2, where z ∈ Rd, ‖ z ‖0≤ k

4: Intialize: R0 = x, m = 0, z =
−→
0

5: while m < k do

6: a = max
j
‖ DT

j x ‖

7: i = argmax
j
‖ DT

j x ‖

8: Rm+1 = Rm − aDi

9: zj = zj + a
10: m = m+ 1
11: end while

2.2 Dictionary Learning

OMP-k is used to code the data with prepared dictionary. If data only is provided, it turns out
an alternating procedure is available to learn the dictionary and code in the same time. When
k is chosen to be 1, the OMP learning degenerates to one iteration, and coding is equivalent to
clustering assigning of data vectors based on absolute value of activation. To update a �lter,
we take the sum of data assigned to this cluster, weighted by the response. Then we keep
updating codes and dictionaries for a �xed times of steps. This dictionary learning procedure
can then be summarized as follows.

Algorithm 2 Dictionary Learning with OMP-1

1: Input: m n-dimension data vectors: X ∈ Rn×m

2: Output: dictionary matrix with d �lters: D ∈ Rn×d

3: Initialize: D = norm(rand(n,d))
4: rand(): random number genrator
5: norm(): rescale columns to be unit length
6:

7: Repeat for �xed number of times:
8: Apply Algorithm 1 on xi,∀i
9: ∀j, retrieve all coding zi with zij 6= 0 and corresponing data vector xi

10: Update Dj = norm(
∑
i

zijx
i)

It is interesting how the procedure resembles standard K-means clustering algorithms. In
K-means, data points are assigned to the closest centroid in terms of Euclidean distance, and

2



centroids are update by taking average of data points with the same assignment. The pro-
posed dictionary learning algorithm above can be regarded as modi�ed K-means with di�erent
clustering criterion and updating rule.

2.3 Max Pooling and A�nity Propagation

Pooling is a frequently applied operation on mapped features. During max pooling process, the
features are grouped into di�erent regions within which only the maximum feature is selected.
With fewer features representing the data, pooling is essential to avoid intensive computation
and over-�tting issues (UFLDL Tutorial).

In our case, we construct pooling regions by grouping features mapped from similar �lters.
(Coates et al., 2012) used single-link agglomerative clustering as grouping algorithm. Filters
within the pre-selected Euclidean distance are clustered together, as long as the diameter of
the group does not exceed certain threshold. In practice, we �nd it di�cult to �nd appropri-
ate parameters: smaller thresholds will produce too many groups, while larger ones will allow
�lters of wide di�erence in the same group.

To cluster the �lters, we use �a�nity propagation� (Frey et al., 2007) to approach the prob-
lem. Rather than focusing only on learned �lters alone, a�nity propagation takes as input
the response to �lters of the data. Messages are transmitted until a good set of clusters are
formed. We use o�-the-shelf implementation of the algorithms, which can cluster the �lters
into exactly certain number of groups.

2.4 Learning Architecture and Classi�er

Now we are ready to present the learning architecture and our classi�er. We adopt model
similar as that in (Coates et al., 2012). The system is built of three layers of hierarchy: two of
which are dictionary learning with max-pooling layer in between. After the pipeline is �nished,
we will have two sets of dictionary, and a grouping assignment to the �rst set. The learned
dictionary is afterwards available to map from given images to their feature representations,
which then is directly used for classi�cation.

Given a dataset of 32-by-32 pixel images, data vectors are constructed by dividing images
into 16 non-overlapping 8-by-8 patches. The �rst layer is connected to those 8-by-8 data
patches, on which dictionary learning algorithm described above is applied. The output of
�rst layer is a set of k1 8-by-8 clusters. First layer responses are constructed by taking the
absolute value of inner product of data points and �lters. Receiving those responses, the sec-
ond layer then utilizes a�nity propagation algorithm to partition k1 clusters into exactly G
groups. According to grouping assignment, responses are max-pooled within each group. At
this point, we have 16 data vectors making up the original 32-by-32 pixel images, and each
data vector is mapped to G max-pooled responses. We then reshape the responses of the same
image to 16G-dimension data vectors. This forms input to the third layer, where the same
dictionary learning procedure proceeds to �nd k2 �lters.

After going through aforementioned pipeline, we are prepared with two sets of dictionary
and a grouping policy for the �rst-layer features. Armed with �lters and groups, it is then
convenient to map a given 32-by-32 image to its feature representation. The process is similar
as training procedure. The image is �rst divided into 16 64-dimension data vectors. Each
data point will have k1responses, which is absolute value of dot product with each �lter in
�rst set of dictionary. According to grouping assignment, �rst layer responses is max-pooled
to produce G responses out of k1features. Those G responses for 16 data vectors are reshaped
to 16G-dimension feature as an entirety. The response to second set of dictionary is simply
dot product, without taking absolute value.

3



Finally, the classi�er will be the third layer �lter itself. Although it is standard to train a
top level classi�er using softmax regression model or linear SVM, it is not feasible in our case
because the natural images are not labeled. Instead, every �lter in the dictionary can be a
classi�er itself: the image with higher response will be considered with greater possibility to
be in a particular category.

3 Experiments

With the preceding algorithms and system, we train our dictionary matrix using natural images
downloaded from Youtube video (Coates et al., 2012). Since we are particularly interested in
identifying faces in the image, we conduct a spectrum of experiments with various positive
example proportions and sizes. Each third layer �lter will be tested as a potential face detector
against our testing dataset, which consists of randomly selected negative examples and Labeled
Face in the Wild images (Huang et al., 2007) in seven di�erent scales and positions. We succeed
in �nding impressive face detectors in di�erent experiments. The best one reaches 95.79% AUC
of the PR curve.

Datasets

To construct our training dataset, we cropped images from Youtube dataset. The raw data
set contains 1.2 millions random video images of various sizes (128-by-96 is a typical one).
We manages to cut o� 0.2 million 64-by-64 face images as our positive example pool. Figure
1 shows �ve such samples. Negative examples are randomly selected 32-by-32 images. An
array of experiments take as input the dataset with di�erent number and portion of positive
examples.

Figure 1: 64-x-64 face images from Youtube dataset

To arti�cially augment dataset, (Krizhevsky et al., 2012) manully divided 64-by-64 images
into �ve parts (four corner patches and the center patch). In our experiments, we choose to
sample 32-by-32 images from our pool every �ve iterations during training of our �rst layer
dictionary. This trick ensures that the dictionary sees an enriched set of faces, while keeping
dataset small to save computation expense. Thereafter, as mentioned before, each 32-by-32
images are transformed to 16 64-dimension data points. Before fed into network, the data vec-
tors goes through preprocessing including mean-removing, normalizing, and ZCA whitening.

We test our �lters against Labeled Face in the Wild (LFW). LFW consists of 13233 250-by-
250 images centered at faces. For each example, we produce 7 32-by-32 images with di�erent
scales and positions, abundantly enlarge our testing dataset. Figure2 shows an example of
original face images, and its derived 7 images. Another �ve times non-face images are added
into testing dataset as negative examples.

4



Figure 2: LFW dataset

Results

We perform eight experiments with di�erent parameters summarized in Table 1. The most
successful trains 640 �rst layer �lters (partitioned into 128 groups) and 15000 second layer
�lters on 1 millions training images with one �fth positive examples, achieving best AUC as
95.79% on our LFW testing dataset. In the most di�cult setting, we can still learn good
dictionaries with 87.94% AUC, where only 20000 face images are in the training set.

ID Data size(Face:Non-Face) Number of �lters Max AUC
1 1 million(1:4) 640 15000 95.79%
2 1 million(1:4) 1280 30000 28.91%
3 1 million(1:4) 3200 75000 31.84%
4 2 millions(1:10) 640 15000 23.41%
5 2 millions(1:10) 640 15000 91.76%
6 4 millions(1:20) 640 15000 26.35%
7 2 millions(1:50) 640 15000 66.00%
8 2 millions(1:100) 640 15000 87.94%

Table 1: My caption

Figure 3: Lower level dictionary

As the table shows, the success of learning is highly sensitive to the parameters we are using.
First, more positive examples in the training set help improve the performance. The best �lter

5



Figure 4: Group of �rst layer �lters

sees largest number of faces images, 0.2 million faces out of 1 million training dataset. It is
not surprising because if we present more faces in the training set, it is easier for the clustering
algorithm to catch the pattern. Moreover, appropriate numbers of �lters is essential to ensure
excellent �lters. If the number of �lters is doubled or even larger, we can no longer �nd good
face detectors as demonstrated in comparison among Experiment 1,2,3. Simply increasing the
number of �lters might not be a good choice, in that it is unlikely to �over-�t� the objects.

To verify our algorithms and classi�ers, we further make statistics and visualization on Exper-
iment 1 in di�erent ways. When the best �lter can reach AUC as high as nearly 96%, many
other good face detectors are equally impressive. As estimated, there are 198 �lters with AUC
higher than 90%. Besides, to �nd �lters specialized for faces with certain position and scale,
we categorized top 100 stimuli for each detector into the seven types (described in Dataset
section). Table 2 summarized the statistics for seven most specialized �lters for each type of
face.

AUC Rank Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 None Face
105 69 0 3 14 13 0 1 0
576 1 58 0 4 10 1 7 19
622 0 0 83 1 0 7 1 8
256 2 0 3 82 0 8 2 3
214 0 0 2 3 73 5 9 8
640 0 0 5 1 3 74 0 17
510 0 11 12 0 4 5 54 14

Table 2: Top 100 stimuli for seven specialized �lters

We then visualize randomly selected 132 �rst layer �lters, and 2 groups generated by a�nity
propagation clustering. As presented in Figure 3, the dictionary contains a wide range of
features, and similar ones successfully merge into one group.

For the higher level dictionary, we cannot display them directly because they are not con-
nected to input images. Rather, we visualize them by �nding their highest-activating images
in the testing dataset. Figure 4 shows the top 100 stimuli for the �lters specialized in type 2
face. Figure 5 shows the mean of top hundred stimuli for seven specialized �lters.

Acknowledgements

We would like to give our great thankfulness to Kihyuk Sohn and Honglak Lee, for their sup-
port in terms of both theoretical guidance and computing environment access.

6



Figure 5: Top 100 stimuli of �lters specialized for type 2 face

Figure 6: Mean of top simuli for seven specialized �lters

References

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled Faces in the Wild: A
Database for Studying Face Recognition in Unconstrained Environments. University of Mas-
sachusetts, Amherst, Technical Report 07-49, October, 2007.

A. Coates and A. Y. Ng. The importance of encoding versus training with sparse coding and
vector quantization. In International Conference on Machine Learning, pages 921-928,2011.

A. Coates, A. Karpathy, and A. Y. Ng. Emergence of Object-Selective Features in Unsu-
pervised Feature Learning. In NIPS, 2012

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classi�cation with Deep Convo-
lutional Neural Networks. In NIPS, 2012.

A. Szlam, K. Kavukcuoglu, and Y. LeCun. Convolutional Matching Pursuit and Dictionary
Learning. arXiv:1010.0422, 2010.

//M. D. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. arXiv
1311.2901, 2013.

7



D. Cire³an, U. Meier, and J. Schmidhuber. Multi-column Deep Neural Networks for Im-
age Classi�cation. In CVPR, 2012.

Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal Matching Pursuit: Recursive
Function Approximation with Application to Wavelet Decomposition. In Annual Asilomar

Conference on Signals Systems and Computers, 1993

B. J. Frey and D. Dueck. Clustering by Passing Messages Between Data Points. In Sci-

ence 315, Feb 2007

A. Ng, J. Ngiam, C. Y. Foo, Y. Mai, C. Suen. UFLDL Tutorial. http://u�dl.stanford.edu/wiki/index.php.

Y. LeCun, L. Bottou, Y. Bengion, and P. Ha�ner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 1998.

8


